105 research outputs found

    Interpretable Adversarial Training for Text

    Full text link
    Generating high-quality and interpretable adversarial examples in the text domain is a much more daunting task than it is in the image domain. This is due partly to the discrete nature of text, partly to the problem of ensuring that the adversarial examples are still probable and interpretable, and partly to the problem of maintaining label invariance under input perturbations. In order to address some of these challenges, we introduce sparse projected gradient descent (SPGD), a new approach to crafting interpretable adversarial examples for text. SPGD imposes a directional regularization constraint on input perturbations by projecting them onto the directions to nearby word embeddings with highest cosine similarities. This constraint ensures that perturbations move each word embedding in an interpretable direction (i.e., towards another nearby word embedding). Moreover, SPGD imposes a sparsity constraint on perturbations at the sentence level by ignoring word-embedding perturbations whose norms are below a certain threshold. This constraint ensures that our method changes only a few words per sequence, leading to higher quality adversarial examples. Our experiments with the IMDB movie review dataset show that the proposed SPGD method improves adversarial example interpretability and likelihood (evaluated by average per-word perplexity) compared to state-of-the-art methods, while suffering little to no loss in training performance

    A Power Efficient Sensing/Communication Scheme: Joint Source-Channel-Network Coding by Using Compressive Sensing

    Full text link
    We propose a joint source-channel-network coding scheme, based on compressive sensing principles, for wireless networks with AWGN channels (that may include multiple access and broadcast), with sources exhibiting temporal and spatial dependencies. Our goal is to provide a reconstruction of sources within an allowed distortion level at each receiver. We perform joint source-channel coding at each source by randomly projecting source values to a lower dimensional space. We consider sources that satisfy the restricted eigenvalue (RE) condition as well as more general sources for which the randomness of the network allows a mapping to lower dimensional spaces. Our approach relies on using analog random linear network coding. The receiver uses compressive sensing decoders to reconstruct sources. Our key insight is the fact that, compressive sensing and analog network coding both preserve the source characteristics required for compressive sensing decoding.Comment: Presented at Allerton Conference 201

    Certifiably Robust Interpretation in Deep Learning

    Full text link
    Deep learning interpretation is essential to explain the reasoning behind model predictions. Understanding the robustness of interpretation methods is important especially in sensitive domains such as medical applications since interpretation results are often used in downstream tasks. Although gradient-based saliency maps are popular methods for deep learning interpretation, recent works show that they can be vulnerable to adversarial attacks. In this paper, we address this problem and provide a certifiable defense method for deep learning interpretation. We show that a sparsified version of the popular SmoothGrad method, which computes the average saliency maps over random perturbations of the input, is certifiably robust against adversarial perturbations. We obtain this result by extending recent bounds for certifiably robust smooth classifiers to the interpretation setting. Experiments on ImageNet samples validate our theory

    Maximum Likelihood Latent Space Embedding of Logistic Random Dot Product Graphs

    Full text link
    A latent space model for a family of random graphs assigns real-valued vectors to nodes of the graph such that edge probabilities are determined by latent positions. Latent space models provide a natural statistical framework for graph visualizing and clustering. A latent space model of particular interest is the Random Dot Product Graph (RDPG), which can be fit using an efficient spectral method; however, this method is based on a heuristic that can fail, even in simple cases. Here, we consider a closely related latent space model, the Logistic RDPG, which uses a logistic link function to map from latent positions to edge likelihoods. Over this model, we show that asymptotically exact maximum likelihood inference of latent position vectors can be achieved using an efficient spectral method. Our method involves computing top eigenvectors of a normalized adjacency matrix and scaling eigenvectors using a regression step. The novel regression scaling step is an essential part of the proposed method. In simulations, we show that our proposed method is more accurate and more robust than common practices. We also show the effectiveness of our approach over standard real networks of the karate club and political blogs

    Normalized Wasserstein Distance for Mixture Distributions with Applications in Adversarial Learning and Domain Adaptation

    Full text link
    Understanding proper distance measures between distributions is at the core of several learning tasks such as generative models, domain adaptation, clustering, etc. In this work, we focus on mixture distributions that arise naturally in several application domains where the data contains different sub-populations. For mixture distributions, established distance measures such as the Wasserstein distance do not take into account imbalanced mixture proportions. Thus, even if two mixture distributions have identical mixture components but different mixture proportions, the Wasserstein distance between them will be large. This often leads to undesired results in distance-based learning methods for mixture distributions. In this paper, we resolve this issue by introducing the Normalized Wasserstein measure. The key idea is to introduce mixture proportions as optimization variables, effectively normalizing mixture proportions in the Wasserstein formulation. Using the proposed normalized Wasserstein measure leads to significant performance gains for mixture distributions with imbalanced mixture proportions compared to the vanilla Wasserstein distance. We demonstrate the effectiveness of the proposed measure in GANs, domain adaptation and adversarial clustering in several benchmark datasets.Comment: Accepted at ICCV 201

    Fantastic Four: Differentiable Bounds on Singular Values of Convolution Layers

    Full text link
    In deep neural networks, the spectral norm of the Jacobian of a layer bounds the factor by which the norm of a signal changes during forward/backward propagation. Spectral norm regularizations have been shown to improve generalization, robustness and optimization of deep learning methods. Existing methods to compute the spectral norm of convolution layers either rely on heuristics that are efficient in computation but lack guarantees or are theoretically-sound but computationally expensive. In this work, we obtain the best of both worlds by deriving {\it four} provable upper bounds on the spectral norm of a standard 2D multi-channel convolution layer. These bounds are differentiable and can be computed efficiently during training with negligible overhead. One of these bounds is in fact the popular heuristic method of Miyato et al. (multiplied by a constant factor depending on filter sizes). Each of these four bounds can achieve the tightest gap depending on convolution filters. Thus, we propose to use the minimum of these four bounds as a tight, differentiable and efficient upper bound on the spectral norm of convolution layers. We show that our spectral bound is an effective regularizer and can be used to bound either the lipschitz constant or curvature values (eigenvalues of the Hessian) of neural networks. Through experiments on MNIST and CIFAR-10, we demonstrate the effectiveness of our spectral bound in improving generalization and provable robustness of deep networks.Comment: Accepted at ICLR, 202

    (De)Randomized Smoothing for Certifiable Defense against Patch Attacks

    Full text link
    Patch adversarial attacks on images, in which the attacker can distort pixels within a region of bounded size, are an important threat model since they provide a quantitative model for physical adversarial attacks. In this paper, we introduce a certifiable defense against patch attacks that guarantees for a given image and patch attack size, no patch adversarial examples exist. Our method is related to the broad class of randomized smoothing robustness schemes which provide high-confidence probabilistic robustness certificates. By exploiting the fact that patch attacks are more constrained than general sparse attacks, we derive meaningfully large robustness certificates against them. Additionally, in contrast to smoothing-based defenses against L_p and sparse attacks, our defense method against patch attacks is de-randomized, yielding improved, deterministic certificates. Compared to the existing patch certification method proposed by Chiang et al. (2020), which relies on interval bound propagation, our method can be trained significantly faster, achieves high clean and certified robust accuracy on CIFAR-10, and provides certificates at ImageNet scale. For example, for a 5-by-5 patch attack on CIFAR-10, our method achieves up to around 57.6% certified accuracy (with a classifier with around 83.8% clean accuracy), compared to at most 30.3% certified accuracy for the existing method (with a classifier with around 47.8% clean accuracy). Our results effectively establish a new state-of-the-art of certifiable defense against patch attacks on CIFAR-10 and ImageNet. Code is available at https://github.com/alevine0/patchSmoothing.Comment: NeurIPS 202

    Understanding GANs: the LQG Setting

    Full text link
    Generative Adversarial Networks (GANs) have become a popular method to learn a probability model from data. In this paper, we aim to provide an understanding of some of the basic issues surrounding GANs including their formulation, generalization and stability on a simple benchmark where the data has a high-dimensional Gaussian distribution. Even in this simple benchmark, the GAN problem has not been well-understood as we observe that existing state-of-the-art GAN architectures may fail to learn a proper generative distribution owing to (1) stability issues (i.e., convergence to bad local solutions or not converging at all), (2) approximation issues (i.e., having improper global GAN optimizers caused by inappropriate GAN's loss functions), and (3) generalizability issues (i.e., requiring large number of samples for training). In this setup, we propose a GAN architecture which recovers the maximum-likelihood solution and demonstrates fast generalization. Moreover, we analyze global stability of different computational approaches for the proposed GAN optimization and highlight their pros and cons. Finally, we outline an extension of our model-based approach to design GANs in more complex setups than the considered Gaussian benchmark

    Robustness Certificates Against Adversarial Examples for ReLU Networks

    Full text link
    While neural networks have achieved high performance in different learning tasks, their accuracy drops significantly in the presence of small adversarial perturbations to inputs. Defenses based on regularization and adversarial training are often followed by new attacks to defeat them. In this paper, we propose attack-agnostic robustness certificates for a multi-label classification problem using a deep ReLU network. Although computing the exact distance of a given input sample to the classification decision boundary requires solving a non-convex optimization, we characterize two lower bounds for such distances, namely the simplex certificate and the decision boundary certificate. These robustness certificates leverage the piece-wise linear structure of ReLU networks and use the fact that in a polyhedron around a given sample, the prediction function is linear. In particular, the proposed simplex certificate has a closed-form, is differentiable and is an order of magnitude faster to compute than the existing methods even for deep networks. In addition to theoretical bounds, we provide numerical results for our certificates over MNIST and compare them with some existing upper bounds

    Deep Partition Aggregation: Provable Defense against General Poisoning Attacks

    Full text link
    Adversarial poisoning attacks distort training data in order to corrupt the test-time behavior of a classifier. A provable defense provides a certificate for each test sample, which is a lower bound on the magnitude of any adversarial distortion of the training set that can corrupt the test sample's classification. We propose two novel provable defenses against poisoning attacks: (i) Deep Partition Aggregation (DPA), a certified defense against a general poisoning threat model, defined as the insertion or deletion of a bounded number of samples to the training set -- by implication, this threat model also includes arbitrary distortions to a bounded number of images and/or labels; and (ii) Semi-Supervised DPA (SS-DPA), a certified defense against label-flipping poisoning attacks. DPA is an ensemble method where base models are trained on partitions of the training set determined by a hash function. DPA is related to both subset aggregation, a well-studied ensemble method in classical machine learning, as well as to randomized smoothing, a popular provable defense against evasion attacks. Our defense against label-flipping attacks, SS-DPA, uses a semi-supervised learning algorithm as its base classifier model: each base classifier is trained using the entire unlabeled training set in addition to the labels for a partition. SS-DPA significantly outperforms the existing certified defense for label-flipping attacks on both MNIST and CIFAR-10: provably tolerating, for at least half of test images, over 600 label flips (vs. < 200 label flips) on MNIST and over 300 label flips (vs. 175 label flips) on CIFAR-10. Against general poisoning attacks, where no prior certified defenses exists, DPA can certify >= 50% of test images against over 500 poison image insertions on MNIST, and nine insertions on CIFAR-10. These results establish new state-of-the-art provable defenses against poisoning attacks.Comment: ICLR 202
    • …
    corecore